Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
BMC Pediatr ; 24(1): 96, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310242

RESUMO

BACKGROUND: NARS2 as a member of aminoacyl-tRNA synthetases was necessary to covalently join a specific tRNA to its cognate amino acid. Biallelic variants in NARS2 were reported with disorders such as Leigh syndrome, deafness, epilepsy, and severe myopathy. CASE PRESENTATION: Detailed clinical phenotypes were collected and the NARS2 variants were discovered by whole exome sequencing and verified by Sanger sequencing. Additionally, 3D protein structure visualization was performed by UCSF Chimera. The proband in our study had early-onset status epilepticus with abnormal EEG and MRI results. She also performed global developmental delay (GDD) and myocardial dysfunction. Next-generation sequencing (NGS) and Sanger sequencing revealed compound heterozygous missense variants [NM_024678.6:exon14: c.1352G > A(p.Arg451His); c.707T > C(p.Phe236Ser)] of the NARS2 gene. The proband develops refractory epilepsy with GDD and hyperlactatemia. Unfortunately, she finally died for status seizures two months later. CONCLUSION: We discovered two novel missense variants of NARS2 in a patient with early-onset status epilepticus and myocardial dysfunction. The NGS enables the patient to be clearly diagnosed as combined oxidative phosphorylation deficiency 24 (COXPD24, OMIM:616,239), and our findings expands the spectrum of gene variants in COXPD24.


Assuntos
Aspartato-tRNA Ligase , Epilepsia Resistente a Medicamentos , Epilepsia , Estado Epiléptico , Feminino , Humanos , Estado Epiléptico/diagnóstico , Estado Epiléptico/genética , Epilepsia Resistente a Medicamentos/genética , Mutação de Sentido Incorreto , RNA de Transferência , Mutação , Aspartato-tRNA Ligase/genética
2.
Nat Commun ; 15(1): 937, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297033

RESUMO

Malaria poses an enormous threat to human health. With ever increasing resistance to currently deployed drugs, breakthrough compounds with novel mechanisms of action are urgently needed. Here, we explore pyrimidine-based sulfonamides as a new low molecular weight inhibitor class with drug-like physical parameters and a synthetically accessible scaffold. We show that the exemplar, OSM-S-106, has potent activity against parasite cultures, low mammalian cell toxicity and low propensity for resistance development. In vitro evolution of resistance using a slow ramp-up approach pointed to the Plasmodium falciparum cytoplasmic asparaginyl-tRNA synthetase (PfAsnRS) as the target, consistent with our finding that OSM-S-106 inhibits protein translation and activates the amino acid starvation response. Targeted mass spectrometry confirms that OSM-S-106 is a pro-inhibitor and that inhibition of PfAsnRS occurs via enzyme-mediated production of an Asn-OSM-S-106 adduct. Human AsnRS is much less susceptible to this reaction hijacking mechanism. X-ray crystallographic studies of human AsnRS in complex with inhibitor adducts and docking of pro-inhibitors into a model of Asn-tRNA-bound PfAsnRS provide insights into the structure-activity relationship and the selectivity mechanism.


Assuntos
Antimaláricos , Aspartato-tRNA Ligase , Animais , Humanos , Plasmodium falciparum/genética , Asparagina/metabolismo , Aspartato-tRNA Ligase/genética , Aminoacil-RNA de Transferência/metabolismo , Antimaláricos/farmacologia , Mamíferos/genética
3.
J Clin Lab Anal ; 37(21-22): e24983, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37950505

RESUMO

BACKGROUND: NARS2 encodes mitochondrial Asparaginyl-tRNA Synthetase 2, which catalyzes the aminoacylation of tRNA-Asn in the mitochondria. To date, 24 variants have been reported in NARS2 gene in 35 patients. The phenotypic variability of NARS2-associated disorder is broad, ranging from neurodevelopmental disorders to hearing loss. In this study, we report some novel imaging findings in an Iranian patient suffering from epileptic encephalopathy, caused by a previously reported variant, c.500A > G; p.(His167Arg), in NARS2. METHODS: The spectrum of clinical manifestations of two Iranian patients was investigated and genetic analysis was performed by Whole-exome sequencing (WES). Additionally, we also reviewed the literature and summarized the phenotypes of previously reported patients with variants in the NARS2 gene. RESULTS: Here, we present the phenotypic and genetic features of 2 unrelated Iranian infants presented with neurodevelopmental delay, seizures, hearing impairment, feeding problems, elevated serum lactate levels in addition to subdural hematoma and cerebral parenchymal hemorrhage in the brain magnetic resonance imaging (MRI) of one of the patients. Genetic analysis revealed a biallelic missense variant in NARS2: c.500A > G; p.(His167Arg). We described the subdural hematoma and cerebral parenchymal hemorrhage of the brain for the first time. CONCLUSIONS: Our study provides new clinical findings, subdural hematoma, and parenchymal hemorrhage, in NARS2-related disorders. Our findings along with previous studies provide more evidence of the clinical presentation of the disease caused by pathogenic variants in NARS2. Expanding the clinical spectrum increases the diagnostic rate of molecular testing and improves the quality of counseling for at-risk couples.


Assuntos
Aspartato-tRNA Ligase , Encéfalo , Lactente , Humanos , Irã (Geográfico) , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Hematoma Subdural/complicações , Hematoma Subdural/patologia , Fenótipo , Hemorragia Cerebral , Aspartato-tRNA Ligase/genética
4.
Cell Rep ; 42(10): 113264, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37838946

RESUMO

Aspartyl-tRNA synthetase 2 (Dars2) is involved in the regulation of mitochondrial protein synthesis and tissue-specific mitochondrial unfolded protein response (UPRmt). The role of Dars2 in the self-renewal and differentiation of hematopoietic stem cells (HSCs) is unknown. Here, we show that knockout (KO) of Dars2 significantly impairs the maintenance of hematopoietic stem and progenitor cells (HSPCs) without involving its tRNA synthetase activity. Dars2 KO results in significantly reduced expression of Srsf2/3/6 and impairs multiple events of mRNA alternative splicing (AS). Dars2 directly localizes to Srsf3-labeled spliceosomes in HSPCs and regulates the stability of Srsf3. Dars2-deficient HSPCs exhibit aberrant AS of mTOR and Slc22a17. Dars2 KO greatly suppresses the levels of labile ferrous iron and iron-sulfur cluster-containing proteins, which dampens mitochondrial metabolic activity and DNA damage repair pathways in HSPCs. Our study reveals that Dars2 plays a crucial role in the iron-sulfur metabolism and maintenance of HSPCs by modulating RNA splicing.


Assuntos
Processamento Alternativo , Aspartato-tRNA Ligase , Processamento Alternativo/genética , Aspartato-tRNA Ligase/genética , Aspartato-tRNA Ligase/metabolismo , Ferro/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Mitocôndrias/metabolismo
5.
Sci Rep ; 13(1): 13042, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563224

RESUMO

Leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation (LBSL) is a rare neurological disorder caused by the mutations in the DARS2 gene, which encodes the mitochondrial aspartyl-tRNA synthetase. The objective of this study was to understand the impact of DARS2 mutations on cell processes through evaluation of LBSL patient stem cell derived cerebral organoids and neurons. We generated human cerebral organoids (hCOs) from induced pluripotent stem cells (iPSCs) of seven LBSL patients and three healthy controls using an unguided protocol. Single cells from 70-day-old hCOs were subjected to SMART-seq2 sequencing and bioinformatic analysis to acquire high-resolution gene and transcript expression datasets. Global gene expression analysis demonstrated dysregulation of a number of genes involved in mRNA metabolism and splicing processes within LBSL hCOs. Importantly, there were distinct and divergent gene expression profiles based on the nature of the DARS2 mutation. At the transcript level, pervasive differential transcript usage and differential spliced exon events that are involved in protein translation and metabolism were identified in LBSL hCOs. Single-cell analysis of DARS2 (exon 3) showed that some LBSL cells exclusively express transcripts lacking exon 3, indicating that not all LBSL cells can benefit from the "leaky" nature common to splice site mutations. At the gene- and transcript-level, we uncovered that dysregulated RNA splicing, protein translation and metabolism may underlie at least some of the pathophysiological mechanisms in LBSL. To confirm hCO findings, iPSC-derived neurons (iNs) were generated by overexpressing Neurogenin 2 using lentiviral vector to study neuronal growth, splicing of DARS2 exon 3 and DARS2 protein expression. Live cell imaging revealed neuronal growth defects of LBSL iNs, which was consistent with the finding of downregulated expression of genes related to neuronal differentiation in LBSL hCOs. DARS2 protein was downregulated in iNs compared to iPSCs, caused by increased exclusion of exon 3. The scope and complexity of our data imply that DARS2 is potentially involved in transcription regulation beyond its canonical role of aminoacylation. Nevertheless, our work highlights transcript-level dysregulation as a critical, and relatively unexplored, mechanism linking genetic data with neurodegenerative disorders.


Assuntos
Aspartato-tRNA Ligase , Leucoencefalopatias , Humanos , Medula Espinal/metabolismo , Aspartato-tRNA Ligase/genética , Aspartato-tRNA Ligase/metabolismo , Splicing de RNA , Mutação , Leucoencefalopatias/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675121

RESUMO

Leigh syndrome (LS), also known as infantile subacute necrotizing encephalopathy, is the most frequent mitochondrial disorder in children. Recently, more than 80 genes have been associated with LS, which greatly complicates the diagnosis. In this article, we present clinical and molecular findings of 219 patients with LS and give the detailed description of three cases with rare findings in nuclear genes MORC2, NARS2 and VPS13D, demonstrating wide genetic heterogeneity of this mitochondrial disease. The most common cause of LS in Russian patients are pathogenic variants in the SURF1 gene (44.3% of patients). The most frequent pathogenic variant is c.845_846delCT (66.0% of mutant alleles; 128/192), which is also widespread in Eastern Europe. Five main LS genes, SURF1, SCO2, MT-ATP6, MT-ND5 and PDHA1, account for 70% of all LS cases in the Russian Federation. Using next generation sequencing (NGS) technique, we were able to detect pathogenic variants in other nuclear genes: NDUFV1, NDUFS2, NDUFS8, NDUFAF5, NDUFAF6, NDUFA10, SUCLG1, GFM2, COX10, PMPCB, NARS2, PDHB and SLC19A3, including two genes previously associated with Leigh-like phenotypes-MORC2 and VPS13D. We found 49 previously undescribed nucleotide variants, including two deep intronic variants which affect splicing.


Assuntos
Aspartato-tRNA Ligase , Doença de Leigh , Doenças Mitocondriais , Humanos , Doença de Leigh/diagnóstico , Doença de Leigh/genética , Doença de Leigh/patologia , Doenças Mitocondriais/genética , Mutação , Fenótipo , Federação Russa , Proteínas Mitocondriais/genética , Proteínas de Membrana Transportadoras/genética , Proteínas/genética , Fatores de Transcrição/genética , Aspartato-tRNA Ligase/genética
7.
Eur J Med Genet ; 65(12): 104643, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36252909

RESUMO

Biallelic rare variants in NARS2 that encode the mitochondrial asparaginyl-tRNA synthetase are associated with a wide spectrum of clinical phenotypes ranging from severe neurodegenerative disorders to isolated mitochondrial myopathy or deafness. To date, only a small number of patients with NARS2 variants have been reported, and possible genotype-phenotype correlations are still lacking. Here, we present three siblings who had an early-onset hearing loss, while one developed severe symptoms in adulthood associated with early intellectual impairment, refractory seizures, moderate axonal sensorimotor neuropathy, and atypical psychiatric symptoms. Biochemical analysis revealed impairment of the activity and assembly of the respiratory chain complexes in this patient's muscle and fibroblasts. Whole Exome Sequencing allowed identification of a heterozygous variant NM_024678.5(NARS2):c.822G > C (p.Gln274His) that is known to be pathogenic and to affect splicing of the NARS2 gene, but was unable to detect a second variant in this gene. Coverage analysis and Sanger sequencing led to identification of a novel intronic deletion NM_024678.5(NARS2):c.922-21_922-19del in the three siblings in trans with the c.822G > C. Functional analysis by RT-PCR showed that this deletion was causing aberrant splicing and led to exon 9 skipping in NARS2 mRNA in patient fibroblasts. Our work expands the phenotype and genotype spectrum of NARS2-related disorders. We provide evidence of the pathogenic effect of a novel intronic deletion in the NARS2 gene and report on additional adult patients with a large intrafamilial variability associated with splice variants in this gene. More specifically, we detail the phenotype of the oldest living patient to date with NARS2 variants and, for the first time, we report the psychiatric symptoms associated with this gene. Our work confirms the complexity of genotype-phenotype correlation in patients with pathogenic NARS2 variants.


Assuntos
Aspartato-tRNA Ligase , Splicing de RNA , Humanos , Aspartato-tRNA Ligase/genética , Mutação , Fenótipo , Sequenciamento do Exoma
8.
J Clin Lab Anal ; 36(10): e24691, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36085578

RESUMO

BACKGROUND: DARS2 was overexpressed in multiple tumor types, but the biological role of DARS2 in lung adenocarcinoma (LUAD) have not been elucidated. METHODS: Firstly, the DARS2 expression in LUAD was explored using The Cancer Genome Atlas (TCGA). Then, qRT-PCR and Western blot were performed to confirm DARS2 expression in LUAD. Next, Cox regression and Kaplan-Meier methods were utilized to evaluate whether DARS2 expression can affect the overall survival. The relationships between DARS2 expression and clinicopathological characteristics were investigated by TCGA database. Moreover, we utilized Gene Set Enrichment Analysis (GSEA) to detect DARS2-related signaling pathways in LUAD. Finally, the special function of DARS2 in cell proliferation, invasion and apoptosis was assessed in vitro. RESULTS: The higher expression of DARS2 was found in LUAD compared to para-carcinoma tissues and significantly related to tumor stage, T stage, and M stage. The survival analysis indicated that DARS2 overexpression was related to poor prognosis in LUAD. Multivariate analysis suggested that DARS2 expression was a prognostic indicator. GSEA revealed that DARS2 was primarily involved in cell cycle-related pathways. In addition, upregulation of DARS2 facilitated LUAD cell proliferation, migration, invasion and inhabited apoptosis, DARS2 knockdown showed an opposite result. CONCLUSION: DARS2 modulates the proliferation, invasion and apoptosis of LUAD cells, and sever as a promising therapeutic target for LUAD.


Assuntos
Adenocarcinoma de Pulmão , Aspartato-tRNA Ligase , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/patologia , Aspartato-tRNA Ligase/genética , Aspartato-tRNA Ligase/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , Prognóstico
9.
Stem Cell Res ; 63: 102872, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35914483

RESUMO

Leucoencephalopathy with brain stem and spinal cord involvement and lactate elevation (LBSL) is commonly induced by DARS2 abnormalities and accompanied by slowly progressing pyramidal and cerebellar dysfunction, as well as concomitant dorsal column dysfunction. In this study, an LBSL induced pluripotent stem cell (iPSC) line was generated from peripheral blood mononuclear cells of a female patient carrying biallelic mutations in DARS2. Pluripotency, differentiation potential, and karyotypic normality of this cell line were confirmed. This iPSC line offers a useful cellular model to investigate LBSL phenotypes, mechanisms, and therapy.


Assuntos
Aspartato-tRNA Ligase , Células-Tronco Pluripotentes Induzidas , Leucoencefalopatias , Aspartato-tRNA Ligase/genética , Aspartato-tRNA Ligase/metabolismo , Tronco Encefálico/metabolismo , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Ácido Láctico/metabolismo , Leucócitos Mononucleares/metabolismo , Leucoencefalopatias/genética , Mutação , Medula Espinal/metabolismo
10.
J Phys Chem B ; 126(31): 5821-5831, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35895864

RESUMO

The process of protein biosynthesis is initiated by the aminoacylation process where a transfer ribonucleic acid (tRNA) is charged by the attachment of its cognate amino acid at the active site of the corresponding aminoacyl tRNA synthetase enzyme. The first step of the aminoacylation process, known as the adenylation reaction, involves activation of the cognate amino acid where it reacts with a molecule of adenosine triphosphate (ATP) at the active site of the enzyme to form the aminoacyl adenylate and inorganic pyrophosphate. In the current work, we have investigated the adenylation reaction between aspartic acid and ATP at the active site of the fully solvated aspartyl tRNA synthetase (AspRS) from Escherichia coli in aqueous medium at room temperature through hybrid quantum mechanical/molecular mechanical (QM/MM) simulations combined with enhanced sampling methods of well-tempered and well-sliced metadynamics. The objective of the present work is to study the associated free energy landscape and reaction barrier and also to explore the effects of active site mutation on the free energy surface of the reaction. The current calculations include finite temperature effects on free energy profiles. In particular, apart from contributions of interaction energies, the current calculations also include contributions of conformational, vibrational, and translational entropy of active site residues, substrates, and also the rest of the solvated protein and surrounding water into the free energy calculations. The present QM/MM metadynamics simulations predict a free energy barrier of 23.35 and 23.5 kcal/mol for two different metadynamics methods used to perform the reaction at the active site of the wild type enzyme. The free energy barrier increases to 30.6 kcal/mol when Arg217, which is an important conserved residue of the wild type enzyme at its active site, is mutated by alanine. These free energy results including the effect of mutation compare reasonably well with those of kinetic experiments that are available in the literature. The current work also provides molecular details of structural changes of the reactants and surroundings as the system dynamically evolves along the reaction pathway from reactant to the product state through QM/MM metadynamics simulations.


Assuntos
Aspartato-tRNA Ligase , Trifosfato de Adenosina/metabolismo , Aminoácidos/metabolismo , Aminoacilação , Aspartato-tRNA Ligase/química , Aspartato-tRNA Ligase/genética , Aspartato-tRNA Ligase/metabolismo , Sítios de Ligação , Domínio Catalítico , Entropia , Escherichia coli/genética , Ligases/metabolismo , RNA de Transferência/metabolismo
11.
Mol Genet Metab ; 136(4): 260-267, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35820270

RESUMO

Biallelic pathogenic variants in the nuclear gene DARS2 (MIM# 610956), encoding the mitochondrial enzyme aspartyl-tRNA synthetase (MT-ASPRS) cause leukoencephalopathy with Brain Stem and Spinal Cord Involvement and Lactate Elevation (LBSL) (MIM# 611105), a neurometabolic disorder characterized by progressive ataxia, spasticity, developmental arrest or regression and characteristic brain MRI findings. Most patients exhibit a slowly progressive disease course with motor deterirartion that begins in childhood or adolescence, but can also occasionaly occur in adulthood. More severe LBSL presentations with atypical brain MRI findings have been recently described. Baker's yeast orthologue of DARS2, MSD1, is required for growth on oxidative carbon sources. A yeast with MSD1 knockout (msd1Δ) demonstrated a complete lack of oxidative growth which could be rescued by wild-type MSD1 but not MSD1 with pathogenic variants. Here we reported two siblings who exhibited developmental regression and ataxia with different age of onset and phenotypic severity. Exome sequencing revealed 2 compound heterozygous missense variants in DARS2: c.473A>T (p.Glu158Val) and c.829G>A (p.Glu277Lys); this variant combination has not been previously reported. The msd1Δ yeast transformed with plasmids expressing p.Glu259Lys, equivalent to human p.Glu277Lys, showed complete loss of oxidative growth and oxygen consumption, while the strain carrying p.Gln137Val, equivalent to human p.Glu158Val, showed a significant reduction of oxidative growth, but a residual ability to grow was retained. Structural analysis indicated that p.Glu158Val may interfere with protein binding of tRNAAsp, while p.Glu277Lys may impact both homodimerization and catalysis of MT-ASPRS. Our data illustrate the utility of yeast model and in silico analysis to determine pathogenicity of DARS2 variants, expand the genotypic spectrum and suggest intrafamilial variability in LBSL.


Assuntos
Aspartato-tRNA Ligase , Leucoencefalopatias , Adolescente , Adulto , Aspartato-tRNA Ligase/genética , Ataxia/patologia , Tronco Encefálico/metabolismo , Tronco Encefálico/patologia , Progressão da Doença , Humanos , Ácido Láctico , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/genética , Mutação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Irmãos , Medula Espinal/diagnóstico por imagem , Medula Espinal/metabolismo , Medula Espinal/patologia
12.
Am J Med Genet A ; 188(8): 2466-2471, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35703918

RESUMO

Neonatal diabetes mellitus (NDM) with developmental delay and epilepsy is classified as developmental delay, epilepsy, and neonatal diabetes (DEND) syndrome. The majority of DEND syndrome are due to severely damaging variants of K-ATP channels, and few mitochondria-related genes have been reported. We report here two Japanese siblings who were clinically diagnosed with DEND syndrome in whom NARS2 compound heterozygous variants were detected. Patient 1 was a 3-year-old girl and presented with diabetes ketoacidosis at 3 months old. Patient 2 was a 1-year-old boy who presented with severe hyperglycemia and started insulin therapy at 3 days old. After the first episodes, they both presented with severe developmental delay, hearing loss and treatment-resistant epilepsy accompanied by progressive brain atrophy. Whole-exome sequencing revealed compound heterozygous NARS2 p.R159C and p.L217V variants, and the GATA4 p.P407Q variant in both patients. They were treated by mitochondrial supportive therapy of vitamin B1, L-carnitine, and coenzyme Q10. Patient 2 was withdrawn from insulin therapy at 6 months old. This is the first report of NDM in which variants of the NARS2 gene coding mitochondrial protein were detected. Genetic analysis including mitochondrial genes should be considered in patients with neonatal onset diabetes associated with neurogenic symptoms.


Assuntos
Aspartato-tRNA Ligase , Diabetes Mellitus , Epilepsia , Aspartato-tRNA Ligase/genética , Pré-Escolar , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/genética , Epilepsia/diagnóstico , Epilepsia/tratamento farmacológico , Epilepsia/genética , Feminino , Humanos , Hipoglicemiantes , Lactente , Recém-Nascido , Doenças do Recém-Nascido , Insulina , Masculino , Mutação , Transtornos Psicomotores , Irmãos , Síndrome
13.
J Pathol ; 258(2): 106-120, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35696251

RESUMO

Efficient molecular targeting therapies for most gastric cancers (GCs) are currently lacking, despite GC being one of the most frequent and often devastating malignancies worldwide. Thus, identification of novel therapeutic targets for GC is in high demand. Recent advancements of high-throughput nucleic acid synthesis methods combined with next-generation sequencing (NGS) platforms have made it feasible to conduct functional genomics screening using large-scale pooled lentiviral libraries aimed at discovering novel cancer therapeutic targets. In this study, we performed NGS-based functional genomics screening for human GC cell lines using an originally constructed 6,399 shRNA library targeting all 2,096 human metabolism genes. Our screening identified aspartyl-tRNA synthetase (DARS) as a possible candidate for a therapeutic target for GC. In-house tissue microarrays containing 346 cases of GC combined with public datasets showed that patients with high expression levels of DARS protein exhibited more advanced clinicopathologic parameters and a worse prognosis, specifically among diffuse-type GC patients. Both in vitro and in vivo experiments concretely evidenced that DARS inhibition achieved robust growth suppression of GC cells. Moreover, RNA sequencing of GC cell lines under shRNA-mediated DARS knockdown suggested that DARS inhibition exerts its effect through the inactivation of multiple p-ERK pathways. This MAPK-related growth suppression by DARS inhibition would also be applicable to other cancers; thus, it is warranted to investigate the expression and clinical significance of DARS in a wide spectrum of malignancies. Taken together, NGS-based high-throughput pooled lentiviral screening showed DARS as a novel prognostic marker and a promising therapeutic target for GC. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Aspartato-tRNA Ligase , Neoplasias Gástricas , Aspartato-tRNA Ligase/genética , Aspartato-tRNA Ligase/metabolismo , Linhagem Celular Tumoral , Detecção Precoce de Câncer , Técnicas de Silenciamento de Genes , Genômica , Humanos , Prognóstico , RNA Interferente Pequeno , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética
14.
Mol Biochem Parasitol ; 250: 111488, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35644266

RESUMO

The specificity of each aminoacyl-tRNA synthetase (aaRS) for its cognate amino acid ensures correct tRNA esterification and allows fidelity in protein synthesis. The aaRSs discriminate based on the chemical properties of their amino acid substrates and structural features of the binding pockets. In this study, we characterized aspartyl-(DRS) and asparaginyl-tRNA synthetase (NRS) from Plasmodium falciparum to determine the basis of their specificity towards L-asp and L-asn respectively. The negatively charged L-asp and its analogue L-asn differ only in their side-chain groups i.e., -OH and -NH2. Further, the amino acid binding sites are highly conserved within these two enzymes. Analysis of the substrate (L-asp/L-asn) binding sites across species revealed two highly conserved residues in PfDRS (D408 and K372) and PfNRS (E395 and L360) that are involved in recognition of the Oδ2/Nδ2 of L-asp/L-asn respectively. These residues were mutated and swapped between the D408→E in PfDRS and the corresponding E395→D in PfNRS. A similar approach was employed for residue number K372→L in PfDRS and L360→K in PfNRS. The mutated PfDRSD408E retained its enzymatic activity during step 1 of aminoacylation reaction towards L-asp and L-asn and esterified tRNAAsp with L-asp like wild type enzyme, while the PfDRSK372L was rendered enzymatically inactive. The correspondingly mutated PfNRSE395D was enzymatically inactive. The mutated PfNRSL360K had an altered specificity and esterified tRNAAsn with non-cognate amino acid L-asp and not L-asn. These data suggest that the residue K372 is crucial for the enzymatic activity of PfDRS while the residue L360 in PfNRS imparts specificity towards L-asn.


Assuntos
Aspartato-tRNA Ligase , Plasmodium falciparum , Substituição de Aminoácidos , Aminoácidos/metabolismo , Aspartato-tRNA Ligase/química , Aspartato-tRNA Ligase/genética , Aspartato-tRNA Ligase/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , RNA de Transferência/metabolismo , Aminoacil-RNA de Transferência , Especificidade por Substrato
15.
Neurochem Res ; 47(7): 1972-1984, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35357600

RESUMO

The leukodystrophy Hypomyelination with Brainstem and Spinal cord involvement and Leg spasticity (HBSL) is caused by recessive mutations of the DARS1 gene, which encodes the cytoplasmic aspartyl-tRNA synthetase. HBSL is a spectrum disorder with disease onset usually during early childhood and no available treatment options. Patients display regression of previously acquired motor milestones, spasticity, ataxia, seizures, nystagmus, and intellectual disabilities. Gene-function studies in mice revealed that homozygous Dars1 deletion is embryonically lethal, suggesting that successful modelling of HBSL requires the generation of disease-causing genocopies in mice. In this study, we introduced the pathogenic DARS1 M256L mutation located on exon nine of the murine Dars1 locus. Despite causing severe illness in humans, homozygous Dars1 M256L mice were only mildly affected. To exacerbate HBSL symptoms, we bred Dars1 M256L mice with Dars1-null 'enhancer' mice. The Dars1 M256L/- offspring displayed increased embryonic lethality, severe developmental delay, reduced body weight and size, hydrocephalus, anophthalmia, and vacuolization of the white matter. Remarkably, the Dars1 M256L/- genotype affected energy metabolism and peripheral organs more profoundly than the nervous system and resulted in reduced body fat, increased respiratory exchange ratio, reduced liver steatosis, and reduced hypocellularity of the bone marrow. In summary, homozygous Dars1 M256L and compound heterozygous Dars1 M256L/- mutation genotypes recapitulate some aspects of HBSL and primarily manifest in developmental delay as well as metabolic and peripheral changes. These aspects of the disease might have been overlooked in HBSL patients with severe neurological deficits but could be included in the differential diagnosis of HBSL in the future.


Assuntos
Aspartato-tRNA Ligase , Doenças Desmielinizantes , Animais , Aspartato-tRNA Ligase/genética , Aspartato-tRNA Ligase/metabolismo , Pré-Escolar , Humanos , Camundongos , Mutação , Fenótipo
16.
Ann Clin Transl Neurol ; 9(4): 468-477, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35257509

RESUMO

BACKGROUND: Leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation (LBSL) is a rare leukodystrophy with motor impairment due to biallelic mutations in DARS2, which encodes mitochondrial aspartyl tRNA synthetase. Progressive ataxia is the primary feature. OBJECTIVE: The study objective is to determine the feasibility of remotely collecting quantitative gait and balance measures in LBSL. METHODS: The study design uses wearable accelerometers and the scale for the assessment and rating of ataxia (SARA) scale to assess gait and postural sway in LBSL and control participants' homes through video conferencing. RESULTS: Lateral step variability (LSV), which indicates stride variability, and elevation of the step at mid-swing are increased for LBSL patients during brief walking tests. During stance with the eyes closed, LBSL participants show rapid accelerations and decelerations of body movement covering a large sway area and path. Both the LSV and sway area during stance with the feet together and eyes closed correlate strongly with the SARA. CONCLUSIONS: Wearable accelerometers are valid and sensitive for detecting ataxia in LBSL patients during remote assessments. The finding of large increases in the sway area during stance with the eyes closed is intriguing since dorsal column dysfunction is universally seen in LBSL. This approach can be applied to related rare diseases that feature ataxia.


Assuntos
Aspartato-tRNA Ligase , Ataxia Cerebelar , Leucoencefalopatias , Dispositivos Eletrônicos Vestíveis , Aspartato-tRNA Ligase/genética , Marcha , Humanos , Leucoencefalopatias/genética
17.
Am J Med Genet A ; 188(4): 1214-1225, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35014173

RESUMO

Leigh syndrome (LS), the most common mitochondrial disease in early childhood, usually manifests variable neurodegenerative symptoms and typical brain magnetic resonance imaging (MRI) lesions. To date, pathogenic variants in more than 80 genes have been identified. However, there are still many cases without molecular diagnoses, and thus more disease-causing variants need to be unveiled. Here, we presented three clinically suspected LS patients manifesting neurological symptoms including developmental delay, hypotonia, and epilepsy during the first year of age, along with symmetric brain lesions on MRI. We explored disease-associated variants in patients and their nonconsanguineous parents by whole-exome sequencing and subsequent Sanger sequencing verification. Sequencing data revealed three pairs of disease-associated compound heterozygous variants: c.1A>G (p.Met1?) and 409G>C (p.Asp137His) in SDHA, c.1253G>A (p.Arg418His) and 1300C>T (p.Leu434Phe) in NARS2, and c.5C>T (p.Ala2Val) and 773T>G (p.Leu258Trp) in ECHS1. Among them, the likely pathogenic variants c.409G>C (p.Asp137His) in SDHA, c.1300C>T (p.Leu434Phe) in NARS2, and c.773T>G (p.Leu258Trp) in ECHS1 were newly identified. Segregation analysis indicated the possible disease-causing nature of the novel variants. In silico prediction and three-dimensional protein modeling further suggested the potential pathogenicity of these variants. Our discovery of novel variants expands the gene variant spectrum of LS and provides novel evidence for genetic counseling.


Assuntos
Aspartato-tRNA Ligase , Doença de Leigh , Aspartato-tRNA Ligase/genética , Pré-Escolar , China , Humanos , Doença de Leigh/diagnóstico , Doença de Leigh/genética , Doença de Leigh/patologia , Mutação , Linhagem , Sequenciamento do Exoma
18.
J Trop Pediatr ; 69(1)2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36661119

RESUMO

NARS2 mutations are known to cause various clinical phenotypes such as nonsyndromic hearing loss, Leigh/Alpers syndrome, refractory epilepsy, developmental delay, intellectual disability and myopathy. We presented the first Turkish variant of NASR2 and added type 1 diabetes mellitus (DM), which was not previously described in the phenotype spectrum of this disease. A 4.5-month-old girl presented with hearing loss, hypotonia, refractory myoclonic epilepsy, severe developmental delay and large subdural hemorrhage. In the first year of the follow-up, type 1 DM developed. A homozygous missense mutation, [c.500 A>G, p.H167R] in the NARS2 gene was detected in the trio-based whole-exome sequencing (WES). In this disease, in addition to multi-organ involvement, type 1 DM may also develop, as in our case. Since it is a mitochondrial disease, the decision to treat with valproic acid should be reconsidered. The long diagnostic process can be shortened with WES.


Assuntos
Aspartato-tRNA Ligase , Diabetes Mellitus Tipo 1 , Deficiência Intelectual , Doença de Leigh , Humanos , Aspartato-tRNA Ligase/genética , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Mutação , Mutação de Sentido Incorreto , Fenótipo , Feminino , Lactente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...